Description

Given a n × n matrix A and a positive integer k, find the sum S=A+A2+A3+…+Ak.

Input

The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m

Output

Output the elements of S modulo m in the same way as A is given.

Sample Input

2 2 4
0 1
1 1

Sample Output

1 2
2 3


Solution
题目大意:给一个n*n矩阵A 和 系数k, 求 S=A+A2+A3+…+Ak 。
定义一个2n*2n的矩阵B,I为单位矩阵

Bn+1=∣∣∣A0II∣∣∣n+1=∣∣∣An0A+A2+A3+…+An+II∣∣∣

求Bn+1取B[0][1]−I即可。


Code

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
include #include 
#include 
#include 
using namespace std;
#define maxn 100
typedef long long ll;
struct Mat
{
    int mat[maxn][maxn];//矩阵 
    int row, col;//矩阵行列数 
};
Mat mod_mul(Mat a, Mat b, int p)//矩阵乘法 
{
    Mat ans;
    ans.row = a.row;
    ans.col = b.col;
    memset(ans.mat, 0, sizeof(ans.mat));
    for (int i = 1;i for (int j = 1;j for (int k = 1;k return ans;
}
Mat mod_pow(Mat a, int k, int p)//矩阵快速幂 
{
    Mat ans;
    ans.row = a.row;
    ans.col = a.col;
    for (int i = 1;i for (int j = 1;j while (k)
    {
        if (k & 1)ans = mod_mul(ans, a, p);
        a = mod_mul(a, a, p);
        k >>= 1;
    }
    return ans;
}
int main()
{
    int n, m, k;
    while (~scanf("%d%d%d", &n, &k, &m))
    {
        Mat A;
        A.row = A.col = 2 * n;
        memset(A.mat, 0, sizeof(A.mat));
        for (int i = 1; i for (int j = 1; j scanf("%d", &A.mat[i][j]);
        for (int i = 1; i 1;//初始化单位矩阵
        Mat B = mod_pow(A, k + 1, m);
        for (int i = 1; i for (int j = n+1; j 2*n; j++)
            {
                if (i + n == j) printf("%d", ((B.mat[i][j] - 1) % m+m)%m);//((B.mat[i][j] - 1) % m+m)%m 避免结果为负数
                else printf("%d", B.mat[i][j]);
                printf("%c", j == 2 * n ? '\n' : ' ');
            }

    }
    return 0;
}